If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-18n+15=0
a = 4; b = -18; c = +15;
Δ = b2-4ac
Δ = -182-4·4·15
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{21}}{2*4}=\frac{18-2\sqrt{21}}{8} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{21}}{2*4}=\frac{18+2\sqrt{21}}{8} $
| 5r-2=64+5 | | f-6=-2 | | 8=2/5x+3 | | 16-8k=24(k*k) | | 30=13-r | | 5x+6x+8x=180 | | 5x+45=x | | 27-5x=10x | | (5x+11)+(8x)=180 | | (5x+11)-(8x)=180 | | 5(2x-1)x=16x | | 1-1/2x=6+x | | 4.9x^2-62=0 | | 4.9x^2-13x-75=0 | | 3z-2/4=3z | | 4.9x^2+13x-75=0 | | 15-6x=10x-1 | | 164=2x-3 | | 164=22x-3 | | n2-10n+24=0 | | 5x+4=8x+16 | | 4^{2n-3}=16 | | 11=a-4.6 | | 15=a-3.9 | | -1+r=-21 | | -1+r=21 | | 16+13.694x-1.3725x^2=0 | | h=144-16(1)^2 | | 17=4d-3 | | 3(2x-50)=27 | | 3(2x-500=27 | | -8.63x^2-1.6x+0.2=0 |